UNDERSTANDING SERVICE QUALITY OF MOBILE VIDEO EDITING : MAPPING THE NEGATIVE IMPRESSION BY TEXT MINING APPROACH

  • Maya Ariyanti Telkom University, Bandung
  • Yumna Tazkia Telkom University, Bandung
Keywords: Complaint Prioritization, Sentiment Analysis, Service Quality, WordCloud

Abstract

KineMaster is a video editing application that supports the content creator industry; however, compared to its competitors, that app falls short in release year, download numbers, and ratings. This research aims to determine the service quality of the Android-based KineMaster application based on sentiment analysis and the classification of mobile app service quality (MASQ) dimensions. The data used is secondary data from 5,000 reviews of Google Play Store using Google Colab and processed using RapidMiner Studi version 10.2. Naïve Bayes and k-Nearest Neighbors (KNN) algorithms are applied to determine the best one. Negative sentiment data resulting from the worst MASQ dimension classification will be carried out by WordCloud using Google Colab to determine complaint priorities. The research results show that positive sentiment dominates at 62.24% using the KNN algorithm as the best algorithm in this research. Nevertheless, the 37.76% negative sentiment is not ignored. Based on the number of negative sentiments in each dimension, technical reliability is the worst dimension, valence is the second worst dimension, and performance is the third worst. Prioritized complaints are update reliability, watermarks, app, feature downloads, inability to open apps, export capabilities, high price, and processing speed.

References

Abdurochman, A. F., & Tantra, T. (2023). Pengaruh Airlines Service Quality dan Brand Image terhadap Customer Loyalty Penumpang Maskapai Lcc. Jurnal Ilmiah MEA (Manajemen, Ekonomi, Dan Akuntansi), 7(2).
Aditya, I. A., Haryadi, F. N., Haryani, I., Rachmawati, I., Ramadhani, D. P., Tantra, T., & Alamsyah, A. (2023). Understanding service quality concerns from public discourse in Indonesia state electric company. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18768
Agiesta, W., Sajidin, A., & Perwito. (2021). Pengaruh Kualitas Pelayanan dan Kepuasan Pelanggan terhadap Loyalitas Pelanggan KA Lokal Bandung Raya. Jurnal Ilmiah MEA (Manajemen, Ekonomi, Dan Akuntansi), 5(2).
Alamsyah, A., & Rachmadiansyah, I. (2018). Mapping online transportation service quality and multiclass classification problem-solving priorities. Journal of Physics: Conference Series, 971(1). https://doi.org/10.1088/1742-6596/971/1/012021
Arifin, M. S., Ariyanti, M., & Nurhazizah, E. (2023). Economics and Digital Business Review Analisis Kualitas Mobile Games Berdasarkan Ulasan Platform Google Play Di Indonesia Menggunakan Metode Text Mining. Economics and Digital Business Review, 4(1), 357–368.
Ariyanti, M., & Rifaldi, R. (2019). Monitoring social media with Social Network Analysis Method and Text Network Analysis as Business Intelligence. Test Engineering & Management, 81, 2780–2786.
Arusada, M. D. N., Putri, N. A. S., & Alamsyah, A. (2017, October 18). Training data optimization strategy for multiclass text classification. 2017 5th International Conference on Information and Communication Technology, ICoIC7 2017. https://doi.org/10.1109/ICoICT.2017.8074652
Bafadhal, A. S. (2022). Manajemen Komplain Dan Kualitas Layanan Pariwisata. Yogyakarta: Deepublish Publisher.
Bougie, R., & Sekaran, U. (2020). Research Methods for Business: A Skill-Building Approach. Hoboken: John Wiley & Sons, Inc.
Bustami, D. K., & Noviaristanti, S. (2022). Service Quality Analysis of Tokopedia Application Using Text Mining Method. International Journal of Management, Finance and Accounting, 3(1), 1–21. https://doi.org/10.33093/ijomfa.2022.3.1.1
cnnindonesia.com. (2022, January 12). 7 Rekomendasi Aplikasi Edit Video di HP Android Terbaik. Cnnindonesia.Com. https://www.cnnindonesia.com/teknologi/20220110144140-190-744744/7-rekomendasi-aplikasi-edit-video-di-hp-android-terbaik
dailysocial.id. (2022). 7 Rekomendasi Aplikasi Edit Video Terbaik untuk Android. https://dailysocial.id/post/7-rekomendasi-aplikasi-edit-video-terbaik-untuk-android
Damarta, R., Hidayat, A., & Abdullah, A. S. (2021). The application of k-nearest neighbors classifier for sentiment analysis of PT PLN (Persero) Twitter account service quality. Journal of Physics: Conference Series, 1722(1). https://doi.org/10.1088/1742-6596/1722/1/012002

Hafidz, G. P., & Muslimah, R. U. (2023). Pengaruh Kualitas Layanan, Citra Merek, Kepercayaan Pelanggan dan Kepuasan Pelanggan terhadap Loyalitas Pelanggan Produk Herbalife. Jurnal Ilmiah MEA (Manajemen, Ekonomi, Dan Akuntansi), 7(No.1).
Harahap, R. M., Kusumahadi, K., & Nurhazizah, E. (2022). Analysing Service Quality of Mobile Health Platforms Using Text Analytics: A Case Study of Halodoc and Alodokter. Asian Journal of Research in Business and Management, 168–182. https://doi.org/10.55057/ajrbm.2022.4.1.14
idntimes.com. (2023). 12 Aplikasi Edit Video Terbaik di Android Terbaru 2023. https://www.idntimes.com/tech/gadget/amp/patricia-firscha/aplikasi-edit-video-terbaik-android-gratis?page=all#page-2
katadata.co.id. (2022). Potensi Industri Konten Kreator Indonesia. https://katadata.co.id/amp/desysetyowati/digital/626a3444da848/potensi-industri-konten-kreator-indonesia-ditaksir-senilai-rp7-triliun
Limbong, J. J. A., Sembiring, I., & Hartomo, K. D. (2022). Analisis Klasifikasi Sentimen Ulasan Pada E-Commerce Shopee Berbasis Word Cloud Dengan Metode Naive Bayes Dan K-Nearest Neighbor Analysis of Review Sentiment Classification On E-Commerce Shopee Word Cloud Based With Naïve Bayes And K-Nearest Neighbor Methods. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIK), 9(2), 347–356. https://doi.org/10.25126/jtiik.202294960
Mahr, Dominik, Susan Stead and Gaby Odekerken‐Schröder, (2019), Making sense of customer service experiences: a text mining review. Journal of Services Marketing. https://doi.org/10.1108/jsm-10-2018-0295
Mao, Luke Lunhua (2020). Understanding retail quality of sporting goods stores: a text mining approach. International Journal of Sports Marketing and Sponsorship https://doi.org/10.1108/ijsms-03-2020-0029
Masrury, R. A., Fannisa, & Alamsyah, A. (2019, July 1). Analyzing tourism mobile applications' perceived quality using sentiment analysis and topic modeling. 2019 7th International Conference on Information and Communication Technology, ICoICT 2019. https://doi.org/10.1109/ICoICT.2019.8835255
Ordenes, Francisco Villarroel and Shunyuan Zhang (2019). From words to pixels: text and image mining methods for service research. Journal of Service Management. https://doi.org/10.1108/josm-08-2019-0254
Pratmanto, D., Rousyati, R., Wati, F. F., Widodo, A. E., Suleman, S., & Wijianto, R. (2020). App Review Sentiment Analysis Shopee Application in Google Play Store Using Naive Bayes Algorithm. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012043
Putri, N. N. S., Alamsyah, A., & Widiyanesti, S. (2020, June 1). Fulfillment and Responsiveness on Online Travel Agencies Using Multiclass Classification. 2020 8th International Conference on Information and Communication Technology, ICoICT 2020. https://doi.org/10.1109/ICoICT49345.2020.9166457
Sari, P. K., Alamsyah, A., & Wibowo, S. (2018). Measuring e-Commerce service quality from online customer reviews using sentiment analysis. Journal of Physics: Conference Series, 971(1). https://doi.org/10.1088/1742-6596/971/1/012053
Siddik, A. Muh. A. (2023). Comparison of Transfer Learning Algorithm Performance in Hand Sign Language Digits Image Classification. Jurnal Matematika, Statistika Dan Komputasi, 20(1), 75–89. https://doi.org/10.20956/j.v20i1.26503
Valdivia, A., Luzón, M. V., Cambria, E., & Herrera, F. (2018). Consensus vote models for detecting and filtering neutrality in sentiment analysis. Information Fusion, 44, 126–135. https://doi.org/10.1016/j.inffus.2018.03.00
Wearesocial.com. (2023). Digital 2023 Indonesia.
Widyawati, R., Irawan, H., & Ghina, A. (2021, May 19). Content Analysis of Tourist Opinion based on Tourism Quality (TOURQUAL) by Text Mining Online Reviews: The Case of Borobudur. International Conference on Sustainable Management and Innovation. https://doi.org/10.4108/eai.14-9-2020.2304462
Wulfert, T. (2019). Mobile App Service Quality Dimensions and Requirements for Mobile Shopping Companion Apps Junior Management Science. Junior Management Science, 4(3), 339–391. https://doi.org/10.5282/jums/v4i3pp339-391
Xin Wang, Jiming Tian and Fei L. (2022). Text data mining of power based on natural language processing technology. Journal of Physics: Conference Series, Volume 2221, 2022 2nd International Conference on Electronics, Circuits and Information Engineering (ECIE-2022) 07/01/2022 - 09/01/2022 Online. https://doi.org/10.1088/1742-6596/2221/1/012050
Yahya, R. H., Maharani, W., & Wijaya, R. (2023). Disaster Management Sentiment Analysis Using the Bilstm Method. Jurnal Media Informatika Budidarma, 7(No.1), 501–508. https://doi.org/10.30865/mib.v7i1.5573
Zeithaml, V. A., Bitner, M. J., & Gremler, D. D. (2018). Services Marketing: Integrating Customer Focus Across the Firm (7th ed.). New York: McGraw-Hill Education
Zuliestiana, D. A., & Setiawan, A. N. (2022). Pengaruh E-Service Quality terhadap E-Customer Satisfaction dan Dampaknya terhadap E-Customer Loyalty Pada Pengguna Aplikasi BCA Mobile. Jurnal Ilmiah MEA (Manajemen, Ekonomi, Dan Akuntansi), 6(2).
Published
2024-07-17
How to Cite
Ariyanti, M., & Tazkia, Y. (2024). UNDERSTANDING SERVICE QUALITY OF MOBILE VIDEO EDITING : MAPPING THE NEGATIVE IMPRESSION BY TEXT MINING APPROACH. Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA), 8(2), 1952-1971. https://doi.org/10.31955/mea.v8i2.4256