ANALYSIS OF THE DATA QUALITY OF SERVICE TRANSACTION ON INDONESIA’S BALANCE OF PAYMENTS
Abstract
This study aims to analyze the root causes of data quality problems in Foreign Exchange Reporting (LLD) as the primary data source used in the preparation of the Indonesian Balance of Payments (NPI), especially in service transactions. The research method used is qualitative with a case study approach. Data collection was carried out through interviews, observation, and document analysis. The results of the study concluded that the data quality problem of LLD reporting was data accuracy. The root causes of the data quality problem of LLD reporting come from both the internal and external sides of Bank Indonesia. The root causes from the internal side of Bank Indonesia are complex transaction purpose codes (STT), acceleration of the development of service transaction, and manual data accuracy checks. While the root causes of the data quality problem from the external side of Bank Indonesia is the routine mutation of frontliner employees of the reporting bank and the lack of training conducted by the Head Office of the reporting bank. To address the root of the problem, several strategies are recommended to be implemented, namely adjustments to the STT list, training to LLD Account Officers, preparation of automated data accuracy check tools, preparation of e-learning and handbook about LLD reporting, as well as additional policies related to training obligations by Head Office of the reporting bank.
References
Bank Indonesia. 2019. Peraturan Anggota Dewan Gubernur: Pemantauan Kegiatan Lalu Lintas Devisa Bank dan Nasabah. No.21/15/PADG/2019. Jakarta: Bank Indonesia.
Bank Indonesia. 2022. Peraturan Anggota Dewan Gubernur: Perubahan atas Peraturan Anggota Dewan Gubernur Nomor 21/28/PADG/2019 tentang Pemantauan Kegiatan Lalu Lintas Devisa Bank dan Nasabah. No.24/26/PADG/2922. Jakarta: Bank Indonesia
Batini, Carlo, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009. Methodologies for Data Quality Assessment and Improvement. ACM Computing Surveys 41 (3). https://doi.org/10.1145/1541880.1541883.
Bowo, Wahyu Ari, Syukron Ma’mun, Agus Suhanto, Ahmad Nizar Hidayanto, dan Meisuchi Naisuty. 2019. Data Quality Assessment: A Case Study of PT JAS Using TDQM Framework. Proceedings on 2019 4th International Conference on Informatics and Computing. ICIC.
Cahyono, Hari Susilo & Yudho Giri Sucahyo. Pengukuran Kualitas Data Menggunakan Framework Total Data Quality Management (TDQM): Studi Kasus Sistem Informasi Beasiswa Universitas Indonesia. Jurnal IPTEK-KOM. Vol.2, No. 2, Desember 2020. Jakarta.
Creswell. 2014. Research Design: Qualitative, Quantitative and Mixed Method Approaches (4th ed). Thousand Oaks, CA: Sage Publication.
Departemen Statistik Bank Indonesia. 2022. Metodologi Statistik Jasa pada Neraca Pembayaran Indonesia. Jakarta. Bank Indonesia.
Departemen Statistik Bank Indonesia. 2022. International Transaction Reporting System (ITRS) and Direct Reporting (DR) For BOP and IIP. Jakarta. Bank Indonesia.
Indonesia. Undang-Undang Nomor 24 Tahun 1999 tentang Lalu Lintas Devisa dan Sistem Nilai Tukar. Lembar Negara RI Tahun 1999 Nomor 67, Tambahan Lembar Negara RI Nomor 3844. Sekertariat Negara. Jakarta.
Internationa Monetary Fund (2009). Balance of Payment and International Investment Position Manual. Sixth Edition. International Monetary Fund Publication Service. www.imfbookstore.org
Miles, M. B., & Huberman, M. (1994). Qualitative data analysis second edition. India: SAGE Publications
Raisel, Ethan. M. 1999. Using The Techniques of the World’s Top Strategic Consultans to Help You and Your Business. The McKinsey Way - Book Summary | MConsultingPrep
Redman, C. Thomas. 1998. The Impact of Poor Data Quality on the Typical Enterprise. Communication of ACM 41. 10.1145/269012.269025
Romney B. Marshall, Paul John Steinbart, Scott L. Summers, David A. Wood. 2021. Accounting Information Systems. Fifteenth Edition. United Kingdom. Pearson.
Salim dan Syahrum. 2012. Metode Penelitian Kualitatif. Bandung: Ciptapustaka Media.
Sugiyono, F.X. 2002. Neraca Pembayaran Indonesia Konsep, Metodologi dan Penerapan. Jakarta. Pusat Pendidikan dan Studi Kebanksentralan (PPSK) Bank Indonesia.
Wang, R. Y., & Strong, D. M. 1996b. Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of Management Information Systems, 12(4), 5–33. https://doi.org/10.1080/07421222.1996.11518099
Zulkarnaen, W., Fitriani, I., & Yuningsih, N. (2020). Pengembangan Supply Chain Management Dalam Pengelolaan Distribusi Logistik Pemilu Yang Lebih Tepat Jenis, Tepat Jumlah Dan Tepat Waktu Berbasis Human Resources Competency Development Di KPU Jawa Barat. Jurnal Ilmiah MEA (Manajemen, Ekonomi, & Akuntansi), 4(2), 222-243. https://doi.org/10.31955/mea.vol4.iss2.pp222-243.
Copyright (c) 2023 Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.