PERAN BIG DATA TERHADAP KEMAMPUAN PERUSAHAAN MELAKUKAN ANALISIS RANTAI PASOK : STUDI REVIU LITERATUR TERSTRUKTUR

  • Novia Hindayani Universitas Padjajaran, Bandung
  • Ersa Tri Wahyuni Universitas Padjajaran, Bandung
  • Gia Kardina Prima Amrania Universitas Padjajaran, Bandung

Abstract

Penelitian ini bertujuan untuk mengetahui bagaimana faktor yang mempengaruhi kesuksesan penerapan ABD dalam rantai pasok melalui tinjauan literatur revieu atas 90 sampel artikel jurnal international  tahun 2012-2021. Hasil penelitian meunjukan peningkatan publikasi paling banyak ditahun 2021 yaitu 27 artikel. China merupakan negara yang paling banyak diteliti. Faktor-faktor yang mempengaruhi suksesan penerapan ABD dalam rantai pasok pada model supply chain  management capability dibagi dalam 8 faktor yaitu kerjasama antar divisi, transparansi diantara mitra rantai pasok, dukungan manajemen, pengembangan dan penyelarasan strategi, perubahan efisiensi operasi dan pemeliharaan, budaya pengambilan keputusan, dukungan dana dan studi kelayakan untuk adopsi BD. Penelitian ini berkontribusi pada perkembangan pengetahuan tentang ABD dalam rantai pasok diseluruh dunia. Peneliti dapat menyelidiki secara empiris faktor-faktor yang diidentifikasi sebagai konfirmasi penelitian, dan peneliti selanjutnya juga dapat memperluas area penelitian mereka menggunakan model lainnya. Hasil temuan diperolah dari literatur reviu maka diperlukannya pengujian lebih mendalam melalui metode wawancara atau kuesioner.

References

Akhtar, P., Khan, Z., Frynas, J. G., Tse, Y. K., & Rao-Nicholson, R. (2018). Essential Micro-foundations for Contemporary Business Operations: Top Management Tangible Competencies, Relationship-based Business Networks and Environmental Sustainability. British Journal of Management, 29(1), 43–62. https://doi.org/https://doi.org/10.1111/1467-8551.12233
Bamel, N., & Bamel, U. (2020). Big data analytics based enablers of supply chain capabilities and firm competitiveness: a fuzzy-TISM approach. Journal of Enterprise Information Management, 34(1), 559–577. https://doi.org/10.1108/JEIM-02-2020-0080
Brinch, M. (2018). Understanding the value of big data in supply chain management and its business processes. International Journal of Operations & Production Management, 38(7), 1589–1614. https://doi.org/10.1108/IJOPM-05-2017-0268
Brinch, M., Stentoft, J., Jensen, J. K., & Rajkumar, C. (2018). Practitioners understanding of big data and its applications in supply chain management. International Journal of Logistics Management, 29(2), 555–574. https://doi.org/10.1108/IJLM-05-2017-0115
Cahyadi, A., & Prananto, A. (2015). Reflecting design thinking: a case study of the process of designing dashboards. Journal of Systems and Information Technology, 17(3), 286–306. https://doi.org/10.1108/JSIT-03-2015-0018
Del Giudice, M., Chierici, R., Mazzucchelli, A., & Fiano, F. (2020). Supply chain management in the era of circular economy: the moderating effect of big data. International Journal of Logistics Management, 32(2), 337–356. https://doi.org/10.1108/IJLM-03-2020-0119
Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., Wamba, S. F., & Roubaud, D. (2019). Can big data and predictive analytics improve social and environmental sustainability? Technological Forecasting and Social Change, 144, 534–545. https://doi.org/https://doi.org/10.1016/j.techfore.2017.06.020
Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Fosso Wamba, S., Giannakis, M., & Foropon, C. (2019). Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain. International Journal of Production Economics, 210, 120–136. https://doi.org/https://doi.org/10.1016/j.ijpe.2019.01.023
Elkmash, M. R. M., Abdel-Kader, M. G., & Badr El Din, B. (2021). An experimental investigation of the impact of using big data analytics on customers’ performance measurement. Accounting Research Journal, ahead-of-p(ahead-of-print). https://doi.org/10.1108/ARJ-04-2020-0080
Fosso Wamba, S., & Akter, S. (2019a). Understanding supply chain analytics capabilities and agility for data-rich environments. International Journal of Operations and Production Management, 39(6), 887–912. https://doi.org/10.1108/IJOPM-01-2019-0025
Fosso Wamba, S., & Akter, S. (2019b). Understanding supply chain analytics capabilities and agility for data-rich environments. International Journal of Operations & Production Management, 39(6/7/8), 887–912. https://doi.org/10.1108/IJOPM-01-2019-0025
Gu, V. C., Zhou, B., Cao, Q., & Adams, J. (2021). Exploring the relationship between supplier development, big data analytics capability, and firm performance. Annals of Operations Research, 302(1), 151–172. https://doi.org/10.1007/s10479-021-03976-7
Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317. https://doi.org/10.1016/j.jbusres.2016.08.004
Gunasekaran, A., Subramanian, N., & Papadopoulos, T. (2017). Information technology for competitive advantage within logistics and supply chains: A review. Transportation Research Part E: Logistics and Transportation Review, 99, 14–33. https://doi.org/https://doi.org/10.1016/j.tre.2016.12.008
Hamdam, A., Jusoh, R., Yahya, Y., Jalil, A. A., & Abidin, N. H. Z. (2021). Auditor judgment and decision-making in big data environment: a proposed research framework. Accounting Research Journal.
Ibrahim, A. E. A., Elamer, A. A., & Ezat, A. N. (2021). The convergence of big data and accounting: innovative research opportunities. Technological Forecasting and Social Change, 173, 121171. https://doi.org/https://doi.org/10.1016/j.techfore.2021.121171
Jeble, S., Dubey, R., Childe, S. J., Papadopoulos, T., Roubaud, D., & Prakash, A. (2018). Impact of big data and predictive analytics capability on supply chain sustainability. International Journal of Logistics Management, 29(2), 513–538. https://doi.org/10.1108/IJLM-05-2017-0134
Jeble, S., Kumari, S., Venkatesh, V. G., & Singh, M. (2020). Influence of big data and predictive analytics and social capital on performance of humanitarian supply chain. Benchmarking: An International Journal, 27(2), 606–633. https://doi.org/10.1108/BIJ-03-2019-0102
Jha, A. K., Agi, M. A. N., & Ngai, E. W. T. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138(March), 113382. https://doi.org/10.1016/j.dss.2020.113382
Kache, F., & Seuring, S. (2017a). Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. International Journal of Operations and Production Management, 37(1), 10–36. https://doi.org/10.1108/IJOPM-02-2015-0078
Kache, F., & Seuring, S. (2017b). Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. International Journal of Operations & Production Management, 37(1), 10–36. https://doi.org/10.1108/IJOPM-02-2015-0078
Katsoni, V., & Poulaki, I. (2021). Digital evolution and emerging revenue management practices: evidence from Aegean airlines distribution channels. Journal of Hospitality and Tourism Technology, 12(2), 254–270. https://doi.org/10.1108/JHTT-12-2019-0145
Lamba, K., & Singh, S. P. (2018). Modeling big data enablers for operations and supply chain management. International Journal of Logistics Management, 29(2), 629–658. https://doi.org/10.1108/IJLM-07-2017-0183
Lamest, M., & Brady, M. (2019). Data-focused managerial challenges within the hotel sector. Tourism Review, 74(1), 104–115. https://doi.org/10.1108/TR-03-2017-0064
Mandal, S. (2018a). An examination of the importance of big data analytics in supply chain agility development: A dynamic capability perspective. Management Research Review, 41(10), 1201–1219. https://doi.org/10.1108/MRR-11-2017-0400
Mandal, S. (2018b). Exploring the influence of big data analytics management capabilities on sustainable tourism supply chain performance: the moderating role of technology orientation. Journal of Travel and Tourism Marketing, 35(8), 1104–1118. https://doi.org/10.1080/10548408.2018.1476302
Mandal, S. (2019). The influence of big data analytics management capabilities on supply chain preparedness, alertness and agility: An empirical investigation. Information Technology and People, 32(2), 297–318. https://doi.org/10.1108/ITP-11-2017-0386
Marr, B. (2015). Big Data: Using SMART big data, analytics and metrics to make better decisions and improve performance. John Wiley & Sons.
Narwane, V. S., Raut, R. D., Yadav, V. S., Cheikhrouhou, N., Narkhede, B. E., & Priyadarshinee, P. (2021). The role of big data for Supply Chain 4.0 in manufacturing organisations of developing countries. Journal of Enterprise Information Management, 34(5), 1452–1480. https://doi.org/10.1108/JEIM-11-2020-0463
Nawawi, M. (2020). Model Mediasi ERP , SPM , SCM Dan Kinerja Perusahaan. Jurnal Ilmiah MEA (Manajemen, Ekonomi Dan Akuntansi), 4(3), 357–378.
Richey, R. G., Morgan, T. R., Lindsey-Hall, K., & Adams, F. G. (2016). A global exploration of Big Data in the supply chain: Global exploration of Big Data. International Journal of Physical Distribution and Logistics Management, 46(8), 710–739. https://doi.org/10.1108/IJPDLM-05-2016-0134
Shokouhyar, S., Seddigh, M. R., & Panahifar, F. (2020). Impact of big data analytics capabilities on supply chain sustainability. World Journal of Science, Technology and Sustainable Development, 17(1), 33–57. https://doi.org/10.1108/wjstsd-06-2019-0031
Singh, R. K., Kumar, P., & Chand, M. (2021). Evaluation of supply chain coordination index in context to Industry 4.0 environment. Benchmarking: An International Journal, 28(5), 1622–1637. https://doi.org/10.1108/BIJ-07-2018-0204
Singh, S. K., Gupta, S., Busso, D., & Kamboj, S. (2021). Top management knowledge value, knowledge sharing practices, open innovation and organizational performance. Journal of Business Research, 128, 788–798. https://doi.org/https://doi.org/10.1016/j.jbusres.2019.04.040
Tan, K. H., Zhan, Y., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics, 165, 223–233.
Tiwari, S., Wee, H. M., & Daryanto, Y. (2018). Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Computers and Industrial Engineering, 115, 319–330. https://doi.org/10.1016/j.cie.2017.11.017
Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381–396.
Vera-Baquero, A., Palacios, R. C., Stantchev, V., & Molloy, O. (2015). Leveraging big-data for business process analytics. The Learning Organization.
Viet, N. Q., Behdani, B., Bloemhof, J., & Hoberg, K. (2021). Value of data in multi-level supply chain decisions: a case study in the Dutch floriculture sector. International Journal of Production Research, 59(5), 1368–1385. https://doi.org/10.1080/00207543.2020.1821116
Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3–13.
Wilkin, C., Ferreira, A., Rotaru, K., & Gaerlan, L. R. (2020). Big data prioritization in SCM decision-making: Its role and performance implications. International Journal of Accounting Information Systems, 38(xxxx), 100470. https://doi.org/10.1016/j.accinf.2020.100470
Yu, W., Zhao, G., Liu, Q., & Song, Y. (2021). Role of big data analytics capability in developing integrated hospital supply chains and operational flexibility: An organizational information processing theory perspective. Technological Forecasting and Social Change, 163, 120417. https://doi.org/https://doi.org/10.1016/j.techfore.2020.120417
Published
2022-08-01
How to Cite
Hindayani, N., Wahyuni, E., & Prima Amrania, G. (2022). PERAN BIG DATA TERHADAP KEMAMPUAN PERUSAHAAN MELAKUKAN ANALISIS RANTAI PASOK : STUDI REVIU LITERATUR TERSTRUKTUR. Jurnal Ilmiah MEA (Manajemen, Ekonomi, & Akuntansi), 6(2), 1513-1530. https://doi.org/10.31955/mea.v6i2.2199